
Literature Review : Scripting in Qt for Scripting
Engine development

Mrunali Tandel#1, Prof. Uday Joshi#2, Amit Golhani*3

#Department of Computer Engineering, University of Mumbai
K J Somaiya College of Engineering, Mumbai, India

*Larsen & Toubro Automation,
 Navi Mumbai, India

Abstract— For an application development, the organization
selects programming language according to the various
requirements of the application. C/C++ is considered to be one
of the strongest programming languages with advantages such
as excellent performance and control over memory-layout to
list a few. Though developing an entire application using
C/C++ provides high performance, it becomes tedious for
extending it. Only a programmer proficient in those languages
can extend them and this dependency can be time consuming.
Scripting language can be considered as one of the option. If
the entire application is developed in scripting language, it can
be extended easily; enabling rapid application development,
but the performance of the application will get degraded. In
the competitive market of software, performance of the
application, frequent updating and customisation plays an
important role. The concept of scripting engine is introduced
to ease the above tasks. From the number of frameworks
available for C/C++ programming, Qt framework is
considered for this research, as it is widely used and third-
party scripting extensions are available in the market for Qt.
With the Qt framework, the developer can integrate the
performance critical application developed in C/C++ with the
script to manage the user-interaction and non-performance
critical events.

Keywords— Scripting Engine, cross-platform, Qt Framework,
library.

I. INTRODUCTION
With the advent of many programming languages, the

programmer got the wide variety of choices for developing
their applications. In the past, the entire software was
written in high performance programming language such as
C/C++. No matter, it provides an excellent performance as
the code is precompiled; it becomes very difficult to
program the application. High performance programming
languages are very difficult to master in. On the other hand,
scripting languages do not provide a high performance as,
the conversion to machine code is on-fly, it is very easy to
write an application in scripting language compared to
compiler-based language. Also, programming in scripting
language enables rapid development of an application.
Thus, either the application developed will have low
performance, or it will be very difficult to program or
extend. There are many frameworks available in market,
with Qt being used widely in industrial software
development. Qt is a cross-platform application

development framework, developed by Digia and Qt
Projects (currently maintained by the Qt company), used for
developing applications that can be run on various software
and hardware platforms. It is available with both
commercial and open source licence. The main
development language for Qt is C++ and it supports GCC
C++ compiler and MSVC. [5]There are many third-party
scripting extensions for Qt which enables extending the Qt
application using scripts. The language includes but not
limited to JavaScript, Lua, Python and Ruby.

In order to balance the high performance provided
languages such as C++/C and ease of programming
provided by scripting language, the concept of scripting
engine is proposed. The scripting engine is a tool/library,
which is capable of loading, compiling and running script
code. It can be used in an application to handle all the non-
performance critical and user-interface events. The scripting
engine will enable to develop or extend an existing
application easily using scripts, without hampering the
performance of overall application. The further chapters
explains the proposed concept of scripting engine as well as
the comparative study of various scripting extensions
available in Qt, which enable integrated development using
high performance programming language(C++) and scripts.

II. LITERATURE REVIEW

The Qt application can be extended by scripting
language using scripting modules provided by The Qt
Company or the scripting extensions provided by third-
party. The scripting languages for which, the scripting
extension is available for Qt are JavaScript, Lua, Python
and Ruby. The extensions for JavaScript are QtScript [7]
and QJSEngine [8], both provided by Qt framework. The
extensions for Lua in Qt are QtLua by Savannah projects
[9] and Lqt [10]. The extensions for Python in Qt are PyQt
by Riverbank Computing [11], Pyside by Nokia [12],
Pyotherside [13] and PythonQt [14]. The extensions for
Ruby in Qt are QtRuby by Korundum [15] and Ruby-QML
by seanchas116 [16]. Thus, with any of the extensions
available, scripting engine can be developed, where the core
part of the engine is written in C++ and non-performance
critical part using scripts or the extension of the application
in scripting language which can interact with the user-
interface.

Mrunali Tandel et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (3) , 2016, 1242-1245

www.ijcsit.com 1242

The comparative study based on the requirement of
product of each of the extensions available is as follows:

A. Ease of using

The scripting language to be used in scripting engine
should be easy to use, as the purpose of its introduction in
application is to extend the core part of library using script
for rapid development. If an easy to learn and readable
scripting language is selected, then the application can be
extended easily by anyone, including a non-programmer or
the person with least expertise in programming.
Considering JavaScript, Lua, Python and Ruby, all are easy
to use compared to high performance language like C/C++.
Considering the readability of language, Lua and Python
are readable. Ruby is bit confusing, as in Ruby there are
more than one way of doing things in Ruby. eg. Conditional
statements, aliasing methods and opposite methods
[29][30].

B. Support provided for extensions

As some of the extensions provided for scripting are
third party extensions, support provided by this third party
organization plans a vital role in development of this
project. Support includes the forums and mailing list which
addresses the issues related to these extensions. QtScript
and QJSEngine are the part of Qt framework, thus all
forums related to Qt addresses the issues. The
forums/mailing list for QtScript and QJSEngine are [31],
[32], [33], [34]. For Python, the extension PyQt has
maximum support such as [32], [35], [36], [37]. PySide has
a mailing list which addresses PySide related questions
[38]. QtLua, lqt and QtRuby have mailing list each [39],
[40] and [41] respectively.

C. Licensing

Licensing plays an important role, when the aim is to
develop a proprietary application. QtScript and QJSEngine,
both are licensed under GNU Library General Public
License (LGPL) [7] [8]. PyQt is available with both
commercial license and GNU General Public License
(GPL) with no functional difference between them.
Informal support is provided for commercial license holder
[17]. PySide and PythonQt licensed under LGPL version
2.1 license [18][19]. Pyotherside is licensed under ISC/BSD
license [20]. QtLua is licensed under LGPL version 3
license and Lqt is licensed under MIT(X11) license
[21][10]. QtRuby is licensed under LGPL version 2.1
license [22]. Ruby-QML is licensed under MIT license
[23].

D. Roadmap to support future versions

The extension should provide support to the recent
versions of Qt and should support the maximum features of
Qt. Considering QtScript and QJSEngine, both are the part
of Qt framework. QtScript, which is based on
JavaScriptCore engine, has been deprecated since Qt 4.7,
since; it failed to give high performance as JavaScript V8
engine. Thus, QJSEngine was introduced, which is based
on JavaScript V8 engine. It is much faster and present in Qt
QML module, has better integration with C++ (and QML)

and is more compliant with ECMA standard [42][43]. But,
it is still in developing phase and lacks features which are
present in QtScript such as instantiating QObject from
JavaScript, exposing individual native function to
JavaScript and debugging API. [24][44].

PyQt supports Qt4 and Qt5.4.x. The support for Qt 5.5
is still not available [11]. PySide supports only Qt4, there is
no official support for Qt5 [25]. Pyotherside currently
supports Qt5 and is actively maintained one [13]. PythonQt
currently supports Qt4 and Qt5. It is actively maintained are
developers are working to provide support for Qt 5.5 [14].
The QtLua supports Qt 5.1, 5.2, 5.3, 5.4.x. The support for
Qt 5.5 is not official [9]. Lqt project is no longer maintained
by the author and the existing Lqt contains many bugs and
limited features. Thus, Lqt's support for Qt is stranded to Qt
4.7.

QtRuby is no longer maintained by its developers and
the existence QtRuby library supports only Qt 4.x [26].
Ruby-QML provides binding between Ruby and QML. It
currently provides support up to Qt 5.4 and is actively
maintained [23].

E. Platform Supported

The product should support multiple platforms, as it can
be used by anyone on the desired platforms. The table
below shows the platform supported by each of the
extensions [27][11][18]

TABLE I
PLATFORM SUPPORTED BY THE BINDINGS

F. Speed of execution

Compared to the high performance language like
C/C++, the scripting language plays low. Table I below
shows the time taken in milliseconds by each language for
execution [6]:

TABLE III
COMPARISON WITH RESPECT TO SPEED

Mrunali Tandel et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (3) , 2016, 1242-1245

www.ijcsit.com 1243

III. CONCEPT OF SCRIPTING ENGINE
The concept of scripting engine revolves around

scripting languages and high performance programming
language.[4] High performance programming languages
like C/C++ are performance efficient whereas scripting
languages are easy to use, can achieve maximum
functionality with minimum lines of code and provide the
programmer the advantage of automatic memory
management and typecasting. But scripting languages are
weak in terms of performance, compared to programming
languages such as C/C++. In C/C++, the code is compiled
to native code and there is more control over memory
layout, which is not possible using scripting language. And
thus, scripting language consumes more CPU cycles which
may compromise the overall performance of an application.
An application developed using C++ programming
language and scripting language is as shown below in
Figure 1: [4]

Figure 1 Application in C++

Application written in C/C++ is first compiled

which can be run any number of time, on any platform, thus
providing high performance. Applications written in
scripting language are loaded and interpreted on-fly at
runtime by scripting engine and thus are not performance
efficient. The concept of scripting engine is to develop the
part of an application which is performance critical, in high
performance language and to manage the non-performance
critical code, User-interface components and interaction in
scripting language. The performance critical library can be
exposed to script-based application, thus, it provides an
advantage of accessing the code with minimum scripts and
the core library can be modified independently, without
affecting the interaction and GUI module. Thus, the
resulting application will give almost equal performance
compared to the application developed in C/C++ and
enables rapid development. The resulting application will
be we as shown below in figure 3:

Figure 2 Application in scripting language

Figure 3 Application using Scripting extension of C++ library (Scripting

Engine)

Figure 4 demonstrates an example of the working
of Scripting Engine concept. In figure 4, the provision is
given by scripting engine to a non-programmer to extend
the core library. The extension can be to develop the
interactive user-interface. Thus, the developer can use the
easy to use script to extend the application without
investing efforts, at the same time; the performance
requirement of the application is taken care of at the core
library level.

Figure 4 Working of the concept

A. Advantages of the resulting approach
 Enables easy extension of the application using

script. Thus, the core application can be extended
using the scripting language easily without any
significant performance difference compared to an
application developed purely in C/C++, handling
performance critical task at C/C++ library level.

 No type-casting, memory management and
complex syntax for extending an application.

 Automation of repetitive task based on the event
generation at user-interface level or at library
level.

 The application can be easily customised using the
scripting engine, if the user interface and the
interaction are managed by scripts.

 Rapid prototyping of an application.

IV. APPLICATION OF THE RESULTING APPROACH
The resulting scripting engine can be used in various

approaches, such as:
 The approach can be used for rapid development

of embedded systems, where the engineer can use
the resulting scripting engine for generating panel
user-interface with ease. The development of user-
interface will be independent of the changes or
modification in the core libraries.

Mrunali Tandel et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (3) , 2016, 1242-1245

www.ijcsit.com 1244

 Development of games, where the common actions
based on events are defined in the core libraries
and the UI can be developed rapidly using those
libraries through script, thus, automating the action
of tiles in the game.[1]

 Development of User Interface of Direct TV,
where the scripts can be defined to load the
functions in library based on the event from user.
[2]

 Development of applications, where the
development time is critical and the user interface
developer has to experiment with the designs. [3]

V. CONCLUSIONS
The concept of scripting engine using Qt framework

aims to make an application development or extension easy,
balancing the performance requirement desired for the
resulting application. Using Qt extensions for scripting, it
enables to develop rich user-interface and event-handling of
the interaction with user-interface using scripts.
Considering the requirement of the application, different
extension can be. As one of the objective of Scripting
Engine is the ease of extending an existing application by a
non-programmer, scripting engine like Lua and Python can
be selected which are easily readable and unambiguous to
use. If the aim is to develop a commercial application, PyQt
provides commercial licence and informal support for the
commercial licence holder. If the speed of the application is
priority, QJSEngine can be used for scripting with the
fastest JavaScript version 8 engine, provided few of the
functions can be compromised. Pyotherside or Ruby-QML
can be considered, if the developer does not wish to
purchase the commercial license to develop proprietary
software, as they are licensed under ISC/BSD and MIT
respectively. The online support provided by exensions
such as QtScript, QJSEngine and PyQt will provide the
developer an added bene_t. The Scripting Engine developed
using extensions such as QtScript, QJSEngine, PyQt and
PySide can be extended on many platforms including the
non-conventional ones, whereas, the other extensions
provide support for only conventional ones. Thus, using a
strong framework like Qt, an appropriate extension can be
selected to develop a Scripting Engine for rapid application
development, meeting the high performance requirement.
The resulting approach will enable any non-programmer to
extend an application with ease and the product can be
marketed within the stipulated time.

ACKNOWLEDGMENT

The authors are thankful to Dr. Shubha Pandit, the
Principal of K J Somaiya College of Engineering, Prof.
Bharthi Narayan, Head of Computer Department, Mr.
Rahul Rane and Mr. Shishir Gupta from Larsen & Toubro
Automation, Navi Mumbai, for providing the opportunity
and necessary facilities for the preparation of the paper.

REFERENCES

[1] M. McLaughlin and M. Katchabaw, A Reusable Scripting Engine for
Automating Cinematics and Cut-Scenes in Video Games,
Proceedings of CGSA 2006 Symposium.

[2] Milivoj Bozic, Dusan Zivkov, Istvan Pap and Goran Miljkovic,
Scriptable Graphical user Interface Engine for embedded platform,
21st Telecommunication Forum TELFOR 2013.

[3] Hans Christian Woithe and Ulrich Kremer, A Light Weight Scripting
for the Slocum Glider, IEEE Oceans 2010 Conference, Sydney,
Australia, May 2010.

[4] Scripting|Mono, http://www.mono-
project.com/docs/advanced/embedding/scripting/

[5] Qt(Software), https://en.wikipedia.org/wiki/Qt_(software)
[6] Perl, Python, Ruby, PHP, C, C++, Lua, tcl, JavaScript and Java

comparison, http://raid6.com.au/~onlyjob/posts/arena/
[7] Qt Documentation, QtScript, http://doc.qt.io/qt-5/qtscript-index.html
[8] Qt Documentation, QJSEngine Class, http://doc.qt.io/qt-

5/qjsengine.html
[9] Alexandre Becoulet.,2013, QtLua home project

http://www.nongnu.org/libqtlua/
[10] Mauro Lazzi, Peter Kummel, Michal Kottman, lqt

https://github.com/mkottman/lqt
[11] Riverbank Computing Limited.,2015, What is PyQt?

https://riverbankcomputing.com/software/pyqt/intro
[12] Category:LanguageBindings::PySide https://wiki.qt.io/PySide
[13] Thomas Perl.,2014,Pyotherside:Asynchronous Python3 bingings for

Qt5 https://thp.io/2011/pyotherside/
[14] PythonQt.,2015, http://pythonqt.sourceforge.net/
[15] KDE TechBase,

https://techbase.kde.org/Development/Languages/Ruby
[16] Ruby-qml A QML/Qt Quick bindings for Ruby,

http://seanchas116.github.io/ruby-qml/
[17] Riverbank Computing Limited, PyQt Commercial Version,

https://riverbankcomputing.com/commercial/pyqt
[18] About PySide, https://wiki.qt.io/About_PySide
[19] PythonQt License, http://pythonqt.sourceforge.net/License.html
[20] Thomas Perl, Pyotherside/LICENSE,

https://github.com/thp/pyotherside/blob/master/LICENSE
[21] QtLua Script Engine for Qt-Summary,

http://savannah.nongnu.org/projects/libqtlua
[22] QtRuby, https://en.wikipedia.org/wiki/QtRuby
[23] List of language bindings for Qt5,

https://en.wikipedia.org/wiki/List_of_language_bindings_for_Qt_5
[24] New features in Qt5.5, http://wiki.qt.io/New-Features-in-Qt-5.5
[25] PySide2- PySide Qt5 Support Underway,

http://it.toolbox.com/blogs/enlightenment/pyside2-pyside-qt5-
support-underway-68285

[26] QTbindings, https://github.com/ryanmelt/qtbindings/
[27] Qt Documentation, Community Supported Platforms,

http://doc.qt.io/qt-5/supported-platforms.html
[28] Openbossa, PySide, https://en.wikipedia.org/wiki/PySide
[29] One way to do it? (Ruby vs Python),

http://www.senktec.com/2013/09/one-way-to-do-it/
[30] Olugbenga Oluwagbemi, Adewole Adewumi, Folakemi

Majekodunmi, Sanjay Misra, Luis Fernandez-Sanz, An Analysis of
scripting languages for Research in Applied Computing.

[31] Qt Forum, https://forum.qt.io
[32] Qt Centre, www.qtcentre.org
[33] KDE Community, https://forum.kde.org
[34] QtForum.org, International Qt programming forum,

www.qtforum.org
[35] Developpez.com, pyqt.developpez.com
[36] mail.python.org Mailing Lists, https://mail.python.org
[37] PyQt- Python bindings for Qt,

https://riverbankcomputing.com/mailman/listinfo/pyqt
[38] PySide, http://lists.qt-project.org/mailman/listinfo/pyside
[39] Libqtlua-list, https://lists.nongnu.org/mailman/listinfo/libqtlua-list
[40] Mailing List, http://lists.qt-project.org/mailman/create
[41] Kde-bindings, KDE bindings for other programming languages,

https://mail.kde.org/mailman/listinfo/kde-bindings
[42] Standard ECMA-262,ECMA International, 6th Edition.
[43] Knoll Lars, 2013, [Development] QML and JavaScripts Extensions,

http://lists.qt-project.org/pipermail/development/2013-
November/014185.html

[44] Ilya Diallo, 2015, QtScript to QJSEngine migration, http://lists.qt-
project.org/pipermail/interest/2015-June/017446.html

Mrunali Tandel et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (3) , 2016, 1242-1245

www.ijcsit.com 1245

